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Abstract: Time series of displacement data from unstable rock slopes contain ‘hidden’ infor-
mation about the dynamics of slope failure. This information cannot be found when using the
current linearly causal paradigm based on analytical methods, but is revealed when numerical
and graphical methods from the toolbox of the Nonlinear Sciences are applied. The occurrence
of fractal patterns, which suggests a qualitative difference between intrinsic slope movement
dynamics of time series from the near-to-equilibrium and the far-from-equilibrium dynamical
states of slope failure systems, is an example of such a ‘hidden’, diagnostically important indi-
cator. It helps to identify the stage of immediate danger of rock fall occurrence, just in time to
launch an efficient early warning. Phase portrait and correlograms of time series proved to be suit-
able for earlier revelation of transitions from the near-to-equilibrium to the far-from-equilibrium
dynamical states, as well as for helping to distinguish between intrinsic slope movement dynamics
and climatically driven reversible deformation activity.

The holistic paradigm of the nonlinear complex
character of natural systems is gaining credit in
various fields of geoscience (e.g. Turcotte 1997,
2000; Phillips 1999; Viles 2001; Sivakumar
2004). Natural geosystems are in fact very complex
and highly interactive; their parts interplay with
each other, forming ‘a network of networks’, with
the possibility of surprising new qualities emerging
in their behaviour or attributes. These qualities
could not be deduced simply from the quality of
the interacting parts, because the whole geosystem
is more than just a sum of its parts. In addition, find-
ings about such systems are contextually dependent.
They can be fixed in being causal or random at the
same time, according to the specific relationships
that are studied within them, or because of the
relationship chosen according to the spatial-tem-
poral scale used.
The problems that arise when we try to under-

stand these very complex systems using linearly
analytical tools of ‘classical’ physics are well
known, as discussed in nearly every book dealing
with nonlinear dynamics and dynamical systems
(e.g. Cohen & Stewart 1995; Bar-Yam 1997;
Kantz & Schreiber 1997; Meakin 1998). Here, we
would like to stress that current ‘classical’
methods fail not only in their ‘holy aim’ to be able,
if initial conditions within the system are known, to

predict future behaviour precisely, but sometimes
also in an adequately realistic description of the
actual state of the given geosystem.

This situation was recognized in the early stages
of research in rock slope failure (cf. Terzaghi 1962;
Müller 1980). Since then, two different approaches
have been developing side by side in the field of
engineering geology. The first one, known as a
‘classical’ geomechanically based approach, aims
at elaborating complex models that take into
account more and more factors and processes (e.g.
Poisel & Preh 2004; Poisel & Roth 2004).

The other approach is instead based on a holistic
model of dynamics of unstable slope (i.e. on the
description of the behaviour of that slope). The
quest for such a model was started by Bjerrum &
Jorstadt (1968) in their famous paper about rock
falls and their forecasting in Norway. They called
their approach the ‘Observational Method’,
because it was based on assessment of slope moni-
toring results. To fix an actual degree of rock slope
instability, the authors recommended a scaled list of
symptoms, characteristic dynamical patterns of dis-
placement and deformation phenomena, whose
scaling would correspond with the different stages
of preparation of catastrophic slope collapse.

Since then, such ‘empirical–phenomenological
models’ of temporal development of slope
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movement activity have been used to assess instant
slope instability and temporal prognostication of
rock fall occurrence (Saito 1969; Voight &
Kennedy 1979; Fuzukono 1984; Zvelebil 1985,
2004; Rochet 1992; Zvelebil & Moser 2001).
Those models were applied mainly to interpret the
geometric features of data curves in common,
time-deformation, Cartesian plots of monitoring
time series. Limitations of those empirical–
phenomenological models have, however, been
questioned since they first came into use (e.g.
Zvelebil 1996; Moser et al. 2002; Moser 2003).
Nonlinear analysis and modelling of time series

data offer an opportunity to overcome those limit-
ations. More than 16 years ago, Zvelebil (1984)
started to compare the complex hierarchical pat-
terns of time series from dilatometric (thermal
expansion/dilation) monitoring of rock cracks,
according to the concepts and methods of self-
organizing systems such as those discussed in
Nicholis & Prigogine (1977) and Prigogine &
Stengers (1984). He arrived at the conclusion
that ‘Part of the important information which is
embedded in monitoring time series, is hidden.
When current linear-based methods are employed
it mimics itself as a seemingly random noise (e.g.
Růžek & Zvelebil 1993). Hence, we should look
for new more appropriate methods, and the
toolbox of nonlinear dynamics seems to be a
reasonable choice’ (Zvelebil 1996).
The present paper deals with the preliminary

results of a joint challenge for an engineering geol-
ogist, a mathematician, and a physicist to find new,
mathematically rigorous tools for better handling of
monitoring data from unstable rock slopes.

Search for hidden information

In this paper, the term ‘nonlinearity sensu stricto
(s.s.)’ is defined, in a mathematical sense, as
dynamics that cannot be reduced to a standard
linear autoregressivemodel or its static, possibly non-
linear transformation. A special example of such pro-
cesses can be deterministic chaos. ‘Nonlinearity
sensu lato (s.l.)’ implies a wider, hence vague
meaning; it has been introduced in the field of Non-
linear Science to provide a summarizing label for
the very specific behaviour features of complex
systems that are difficult to elucidatewithin the ordin-
ary frame of linear paradigms (i.e. nonlinearity s.s.,
emergency, self-affinity, self-organization, self-
organized criticality, etc.) (e.g. Bar-Yam 1997).
In our search for hidden information, we used

data from a regional monitoring network of sand-
stone rock slopes in northwestern Bohemia (e.g.
Zvelebil 1989, 1995; Zvelebil & Park 2001). The
network started operating in 1979 in order to

monitor the Czech–German traffic corridor
through the deep canyon of the River Labe. It has
been gradually expanded to encompass slopes
above settlements and tourist paths in areas of the
highest rock fall risks within the National Park
Bohemian Switzerland. From the wide spectrum
of methods available for measuring rock slope
deformations, dilatometry was chosen. Using that
method, systematic measurements of changes in
length (displacements) of measuring lines placed
across rock cracks, have been carried out.

Nowadays, the network spreads over 327 rock
volumes with more than 900 sites where dilato-
metric measurements of relative displacements
along rock cracks are currently measured (cf. Vaři-
lová & Zvelebil 2005). The longest monitoring time
series span over 25 years. The data set includes
nearly all the developmental stages of sandstone
rock slope instability. The quality of time series
differs according to the monitoring techniques;
these include manual measurements, carried out
with a portable rod dilatometer, which cover the
longest time interval and the broadest spectrum of
developmental stages occurring in the course of a
rock fall preparation. Unfortunately, the quality of
the data suffers from irregular sampling and from
variations in the sampling time interval, which
ranges from a few days to one month. This irregular
sampling forced us to modify well-established
methods of Nonlinear Dynamics (e.g. Kantz &
Schreiber 1997), or to re-sample the data in order
to perform the analysis. The series used for the
analysis included some 480 to 612 samples and
the available time span was from January 1984 to
June 2001. Besides the time series obtained from
manual dilatometry, we also analysed the results
supplied by automatic acquisition systems. They
include from 13,000 to 123,000 samples taken at
regular frequencies of 5 or 10 minutes. Those
time series spanned from 3 to 14 months.

Slope monitoring signals consist, as do all signals
from natural dynamical systems (e.g. Perry et al.
2000), of a mixture of coexisting and interacting
dynamics. For this reason, signals relating to rock
mass failure have to be distinguished from displace-
ments and deformations of different origin. There is
quite a long list of displacements/deformations due
to causes other than slope movements resulting
from rock mass failure (cf. Zvelebil 1989); it
includes mainly data due to reversible responses
of the rock mass to perturbations by the external
environment. The most important one is rep-
resented by changes of rock-block volumes due to
temperature variations. The patterns of these thermal
dilations of rock blocks correspond to the hierarchi-
cally structured system of climatic cycles, from the
diurnal and seasonal up to ones taking many years
(Zvelebil 1995). The whole polygenetic assemblage
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of those reversible responses to perturbations by the
external environment will be called the ‘standard
activity’ (SA) in the following sections.
In order to minimize errors in distinguishing

between signals due to SA manifestations and those
peculiar to rock slope displacement, all data without
any detectable evidence of slope movement activity
were omitted from the analysis, and the remaining
time series were divided into two groups: one repre-
senting the ‘near-to-equilibrium’ signals and the
other representing the ‘far-from-equilibrium’ states
of unstable slope systems. The ‘near-to-equilibrium’
(NTE) series were recorded on slopes that exhibit
irreversible long-lasting slope movements, but
where no patterns indicating rapid slope collapse
were identified (e.g. Figs 1a, 5a–c). The ‘far-from-
equilibrium’ (FFE) series were obtained from
recently collapsed slopes only (Figs 2a, 3a, 4a, 5d, e).

Graphical tools: phase space portrait and

correlogram

A major achievement of Dynamical Systems
Theory has been that of bringing us back to geome-
try as an important and rigorous tool for studying
system dynamics (Abraham & Shaw 1992). The
geometrical patterns of common displacement–
time plots have played a prominent role in data
interpretation using current empirical–phenomeno-
logical models (Voight & Kennedy 1979; Fukuzono
1985; Zvelebil 1985, 1996; Zvelebil & Moser
2001). These types of plots of rock slope displace-
ments are represented by Figures 1a, 2a, 3a, 4a,
and 5a. In this paper, two other ways to analyse
time series, phase portraits and correlograms,
were tested. Although these are quite common
tools in Dynamical Systems and Harmonical analy-
sis, they have not yet been used in the field of slope
monitoring.
Phase portraits of ‘raw’, that is, non-filtered

monitoring time series embedded in two- and
three-dimensional phase space, have been found
to be quite appropriate in fulfilling the crucial task
of detecting the transition from NTE to FFE
dynamics. A phase space is a vector space, in
which any point specifies the instant state of the
given system and vice versa. It is a powerful tool
for giving a geometrically synoptic display of
characteristic patterns of very complex behaviour
that, as for non-deterministic systems, can be dis-
played by a huge (possible infinitive) set of states
and some kinds of transition rules that specify
how the system may proceed from one state to the
other (Kantz & Schreiber 1997, pp. 30–31). As
the behaviour of the system develops in time, a
sequence of its state points clusters into a geometri-
cal entity of state trajectory within phase space.

Any geometrically regular pattern that emerges by
clustering of system state trajectories in phase
space corresponds to certain regularities in beha-
viour of the given system.

Geometrical patterns of the NTE state are shown
in Figure 1 and the FFE ones in Figure 2. The phase
portraits aremore synoptic than the current displace-
ment–time plots of the series in question, especially
when very long time series are being studied. In the
phase portrait, all regular patterns which should
otherwise be laboriously traced along the whole
length of such time series, are ‘compressed’ in one
section of phase space, making an attractor image,
that is, a distinct geometrical pattern that represents
the whole group of similar but not necessarily equal
types of behaviour of the given system. Any tran-
sition from the given set of patterns of behaviour
to some other type of behaviour corresponds to the
system state trajectory that is, usually quite dis-
tinctly, heading out of the basin of a given attractor
(compare Fig. 1b with Fig. 2b).

In Figure 2b, the heading-out trajectory was inter-
preted as an indication of a phase shift from the
current NTE state (marked b1, near the origin in
Fig. 2b) to an FFE type of system behaviour
(marked a). It was possible to detect this NTE–
FFE shift even 13 months before (Fig. 2a). The
inverse development is marked b2 in Figure 2b. In
Figures 3a and b, there is another representation of
the FFE to NTE shift, which occurred in the course
of new local crushing at the toe of a high rock wall.
After an initial, high activity of new joint spreading,
a stress rearrangement towards an inner less-
disturbed zone occurred, resulting in a gradual
low-down of the displacement along the new joint.

Correlograms of the time series can help us to
identify where displacement patterns from different
parts of the slope display interrelated features, that
is, which series are produced or influenced by the
same process. In this paper, the variant called XY
plot in MATLAB usage is adopted. Data from
different time series or of the same type (but from
different places) or of different types (e.g. displace-
ment and temperature) from the same place, are
plotted in two 2D or 3D plots. Any relationship
between those time series is characterized by a
specific pattern, whichmay be quantified bymeasur-
ing coupling and synchronization (Paluš et al. 2001;
Paluš & Stefanovska 2003; Pikovsky et al. 2003).

In Figures 4a–b, we show data from different
parts of a large, unstable rock pillar. The high
degree of synchronization of movement events
can be spotted between records from the uppermost
scarp and the lower frontal and toe parts of the pillar
(Fig. 4b). The results of the analyses shown in
Figure 4 support our preliminary assumption about
the existence of deep-seated phenomena affecting
the whole rock mass.
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Numerical tools: distributions and temporal

correlations

Full details of mathematical scrutinizing of given
monitoring time series are presented in Paluš et al.
(2004). Here, we summarize our main results. For
this type of analysis, the basic division into two
groups (the NTE and FFE groups) was retained;
however, the majority of time series had to be
excluded from the analysis because theywere incom-
plete (gaps too large in the records). Only four FFE
and five NTE series were suitable for analysis (see
Fig. 5 and Figs 1a and 2a). The chosen time series

were also regularly resampled upto 1024 samples.
Because the raw dynamics of the series was clearly
dominated by atmospheric influences, mainly by
temperature (visible demonstrations of SA), the
atmospheric variables were also considered in our
analyses. With this aim, meteorological data were
resampled.

Our numerical tools include techniques of uni-
and multivariate surrogate data with simple phase
randomization, fast Fourier transform and the
Schmitz & Schreiber (1999) construction method,
and the method of information–theoretic func-
tionals–redundancies of Paluš (1995a, b). The
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Fig. 1. (a) Regular and (b) phase space portrait plots of the same time series representing the medium stage of
preparation of a rock fall, that is, the ‘near-to-stability’ (NTS) state of the system. The data refer to a twenty-year
record of a slowly sinking and toppling rock block with a volume of 1600 m3, which forms the toe of a 100 m high
rock wall. It may be observed that it is sometimes difficult to assess the intrinsic dynamics of relative displacements
between rock blocks by slope stability failure using time–displacement data, as the patterns of Figure 1a are distorted
by some underlying ‘noise’ (here named ‘standard activity’, SA). SA may be a result of (a) seasonal activity with
amplitude of about 3 mm, generated by volume changes of rock blocks as a result of temperature variations, and to
(b) an almost cyclic activity, with a duration of 10–11 years; this type of SA may also be of climatic origin. The
intrinsic dynamics of slope stability failure (g) show instead a long-lasting linear trend with a gradient of 0.1 mm/year.
Other types of displacements of dubious origin (d) include a 3–5 year cycle, which may be simulated by a simple
vector addition of a 10–11 year almost cyclic SA with linearly increasing irreversible displacement, or may be at
least partially caused by changing the rate of irreversible slope movements. A two-dimensional phase space portrait
of the same regularly resampled data set is shown in (b). It may be seen that the resulting pattern mimics a
hypothetical attractor. Six loops of state trajectories shifted by translation gliding (a) along the symmetry axis of the
attractor correspond to the periods of increased activity of irreversible movements, and all denser areas (b) correspond
to periods of relative calm.
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Fig. 2. (a) Time–displacement plot and (b) phase portrait of time series from site L2 show the transition from (a)
near-to-stability (NTS) to (b) far-from-stability (FFE) states of a slope system. The time–displacement plot
(a) enabled us to empirically detect markers of the NTE–FFE transition from November 1997, whereas the 2D
phase portrait diagram (b) allowed us to detect this same information one year earlier, when a state trajectory heading out
of the NTE attractor was clearly defined.

Fig. 3. (a) Time–displacement plot and (b) 3D phase space portrait of the FFE (a) to the NTE (b) transition in the rock
slab of Figure 1. From the phase portrait diagram, one may see that there is a general shift of the system state
trajectory towards the NTE attractor, before it finally sets inside the b space.
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(a)

(b)

Fig. 4. (a) Displacement patterns of time series from three different positions (S5, S6, S7) within a rock pillar with
a volume of 3000 m3. (b) Correlograms of the same data set. The high degree of synchronization (a) between data
from the uppermost section of the pillar (S7) and those from the lowermost section (S5) suggests that slope movements
are induced by deep-reaching processes. The lack of synchronization (b) between data from section (S7) and (S6)
was instead interpreted as resulting from an independent process occurring near the surface and affecting smaller rock
volumes. Minor synchronization events (marked by the arrows in b) have been related to the rock mass response
to climatic perturbations.
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intrinsic slope dynamics of both the NTE and FFE
time series were characterized using analyses of
the residuals (Fig. 6) obtained from the dilatometric
series after removing meteorological influences.
Those residuals were obtained by triple linear
regressions (DATAPLORE SW Package, 2006).
The plots of empirical probability for amplitudes
larger than the given value were constructed for
the distribution tests. In order to study the dynamics
and temporal correlations, the power spectra
of residuals were calculated (DATAPLORE
SW Package, 2006). Scaling of the distribution of
fluctuations and of the distribution of energy over
the power spectrum, as well as a possible scaling
of fluctuations in their temporal evolution were
studied using a detrended fluctuation analysis
(Peng et al. 1994, 1995; Goldberger et al. 2000).
Using the listed tools, the following results were
obtained.

(1) Nonlinear dynamics s.s. The necessary con-
ditions for proving the presence of nonlinear

dynamics s.s. were not fulfilled (Figs 7–10).
Our finding predominantly concerned the
strong influence of atmospheric variability and
seasonality on monitoring the time series, as
these were mainly expressed by their SA com-
ponent. The influence proved to be linear, but,
at the same time, not trivial. Note that two pre-
viously unknown time lags of 100 and 123 days
were found from regressions of the annual cycle
of atmospheric temperature dynamical features
onto the dilatometric series.

(2) Nonlinearity s.l. This was detected in the
intrinsic slope dynamics of the FFE series,
but not for the NTE ones. There is a qualitative
difference of correlation decay in the
dynamics of the NTE and FFE series. The
residuals from the NTE series possess non-
trivial, but nevertheless linear dynamical
features. They are non-Gaussian, asymmetri-
cally distributed, fat-tailed (e.g. Malamud
2004; Malamud & Turcotte 2000) fluctuations
with short-range correlations (Fig. 11a).

Fig. 5. Dilatometric measurements of relative displacements observed across cracks in sandstones: NTE dynamics
(a–c), FFE dynamics (d, e).
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Nonlinearity s.l. could be considered for the
FFE residuals. They are characterized by an
asymptotic power-law distribution on the ‘fatter’
side of their non-Gaussian distribution (Figs 11b
and 12). Its decay coefficients range between 4
and 5, that is, outside the range of stable Lévy
distribution 0 , m , 2 (Schertzer & Lovejoy
1991). For this type of fluctuation, the dynamics
is intermittent and high-order moments diverge.
Furthermore, the dynamics of FFE residuals pos-
sesses persistent long-range correlation of self-
affine processes (an occurrence of 1/f, that is, of
pink noise, see Turcotte 1989; Barrow 1995;
Malamud & Turcotte 1999). Moreover, two
scaling regions were consistently identified by
both the spectral and the detrended fluctuation
analyses. In time-scales between 4 and 11
weeks, the persistence is characterized by the
spectral decay coefficient b � 2, which corre-
sponds to a Brownian motion. Time-scales from
11 weeks to almost 2 years are described by the

spectral decay coefficient b � 1.5, which corre-
sponds to a fractional Brownian motion.

The information obtained by using this nonlinear
approach for the study of unstable rock masses also
poses new questions; some of them are discussed in
the following sections.

Discussion

Specific results

There is a disproportion of spatial-temporal scales
between monitoring records and the development
of slope failure. The relatively short NTE time
series represent merely point-like samples of the
precritical stages of slope failure systems, whereas
the FFE time series roughly match the critical pre-
collapse stage. Unfortunately, in our case study,
sampling of FFE time series was too coarse to
reveal the finer details of their dynamics. Hence,
our information is relevant only for dynamical

Fig. 6. Linearly detrended NTE (a) and FFE (b) time series of dilatometric measurements D, and time series relative to
(c) atmospheric temperature T, (d) humidity H, and (e) precipitation R.
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Fig. 7. Nonlinearity test of a detrended unstable dilatometric time series, using (b, d) mutual information I (X(t);
X(t þ t)), and the check of the surrogate data using (a, c) linear mutual information L (X(t); Y (t þ t)). The
values of mutual information (a, b) from tested data (solid line), mean (dashed-and-dotted line) and mean+ s.d.
(dashed lines) of a set of 30 measurements are shown, as are the statistical differences in the number of
standard deviations (s.d.) of the surrogates (c, d).

Fig. 8. Testing nonlinearity in the relationship between atmospheric temperature and the detrended unstable
dilatometric time series using (b, d) mutual information I (X(t); Y (t þ t)), and the check of the surrogate data
using (a, c) linear mutual information L (X(t); Y (t þ t)). See caption of Figure 7 for key.
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Fig. 9. Testing nonlinearity in the relationship between atmospheric temperature and the residuals of the multilinear
regression of the detrended FFE dilatometric time series on the meteorological variables using (b, d) mutual
information I (X(t); Y (t þ t)), and the check of the surrogate data, using (a, c) linear mutual information L (X(t); Y
(t þ t)). See caption of Figure 7 for key.

Fig. 10. Testing nonlinearity in residuals of the triple linear regression of the detrended FFE dilatometric time
series on the meteorological variables, using (b, d) mutual information I (X(t); Y (t þ t)), and the check of the surrogate
data using (a, c) linear mutual information L (X(t); Y(t þ t)). See caption of Figure 7 for key.
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Fig. 11. The empirical probability P(jxj. X ) to observe amplitudes larger than a given value X (where x is a deviation
from the mean value) for the triple regression residuals of an example of (a) NTE and (b) FFE time series of
dilatometric measurements. Diamonds and squares illustrate left and right sides of the distribution, respectively. The
solid line shows the average distribution of 105 of a 1024-sample time series randomly drawn from the Gaussian
distribution with the same mean and variance as the residual under study.

Fig. 12. (a, b) Power spectra and (c, d) results of the detrended fluctuation analysis for the differentiated residuals
of the (a, c) single and (b, d) triple regression of the linearly detrended FFE time series of dilatometric
measurements. Thin curves in (a, b) and points in (c, d) are the results of the respective methods; thick solid
lines in all figures are fitted robust linear regressions in particular scaling regions.
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patterns that are sufficiently robust to be fixed by a
14-day frequency sampling condition. On the other
hand, these patterns reoccur so frequently that they
may be spotted, at sufficient significance levels,
within a time interval of about 15 years.
Our results also show that the response patterns

of slope failure systems, which represent a family
of complex highly interactive catastrophic events,
met our theoretically based expectations, as they
allowed us to unravel previously hidden infor-
mation, such as a time lag response of 100 and
123 days. On the other hand, the linear (even
though nontrivial) nature of dilatometric time
series modulation by climatic influence is rather
surprising. In fact, it does not conform to the find-
ings of other authors (e.g. Tausch et al. 1993;
Kupfer & Cairns 1996; Phillips 1999), as climatic
driving, or driving containing any climatic and
therefore inherently chaotic component, implies
the high possibility of unstable, chaotic elements
in the dynamics of the system.
In any case, the relatively simple linear form of cli-

matic modulation does not a priori imply any theor-
etical restriction to improving the ability and
reliability of filtering out the SA component from
the monitoring signal. The question of whether the
intrinsic NTE dynamics really possesses climatic
driving or is a consequence of insufficient filtering
of the SA component has still remained unanswered.
Comparison of the dynamics of NTE time series with
records from stable slopes where only the SA com-
ponent is present should help answer this question.
The reliability of fixed patterns to correspond

with intrinsic slope failure dynamics is relatively
greater for FFE series. In this case, dynamics
includes fluctuations with hyperbolic intermittency
and scaling spectra and is supposed to occur in
response to the action of cascading, energy-transfer-
ring processes (e.g. Schertzer & Lovejoy 1991). The
robust fitting of the distribution of FFE residuals can
indicate the occurrence of a self-organizing process
(Bak & Chen 1991; Jensen 1998; Turcotte 2000;
Turcotte & Rundle 2002; Sornette et al. 2004). The
existence of two scaling regions implies that the
intrinsic fractal dynamics of FFE is scale-dependent.
Therefore, the next step should be a fractal analysis
on short time-scales using high-frequency time
series from automated data acquisition systems.
In any case, the qualitative difference between

the NTE and FFE dynamics, as well as the geome-
trically distinct transition form NTE to FFE states
and the occurrence of fractal patterns of time
series residuals after SA filtering, seem to be quite
important for further enhancement of the early
warning issue. With this aim, these were success-
fully used for the safety evaluation of monitoring
data during emergency remedial works in Hřensko
village in 2002 (Zavoral 2002; Vařilová & Zvelebil

2005). The most recent case history of early dis-
tinguishing of rock fall danger, and a successful
time-prediction of that rock fall occurrence in
Kamenice River Gorge (Vařilová & Zvelebil
2005), has shown that correlograms of displacement
time series from different monitoring sites, as well
as those relating deformation and temperature
changes from the same site, may be useful tools
for monitoring data assessment. For this reason
they are currently being introduced as a regular
part of an integrated monitoring system for the
whole territory of the Czech–Switzerland National
Park. The method of displacement/displacement
correlograms was also successfully applied to clear
kinematics of slope movements endangering the
Spišš Castle, Slovakia (Baškova 2004; Vlčko 2004).

General implications

Sticking to current evaluation tools for monitoring
data, which are based on linear reductionist para-
digms, may result in biased or incorrect handling
of slope dynamics analysis. The list of possible
errors and misleading conclusions includes the
following:

(1) Overestimation of the proportion of random
noise within the signal, accompanied by an
inability to see the ‘hidden’ order. This is
our topical case of hidden information
masked by white noise.

(2) The linear presumption; it is only the external
influence that matters in changes of system
dynamics. This disregards the possibility of
dynamical changes due to the action of inner
mechanisms of slope failure, as well as the
existence of various responses, differing in their
timing, of the slope system to the same pertur-
bations. This is a cardinal phenomenon to be
considered in every triggering-factor study.

(3) The complex nature of slope failure and the
variety of local conditions dictate that fully
quantitative specifications are practically
impossible, and that even location specifica-
tions can be exceedingly difficult to obtain
(Phillips 1999).

The above discussion suggests that (1) most of
the work done for fixing ‘critical threshold values’
for external influences on catastrophic slope
instability events (e.g. Dikau & Schrott 1999;
Rybář 1999, 2004; Schmidt & Dikau 2004) is
biased by methodical incorrectness; (2) there is a
theoretically given limit for adequacy of results
from linearly–causally based numerical models of
slope deformation behaviour and stability failure,
which cannot be overcome by any further refine-
ment (even for the most sophisticated ones, such
as FEM and DEM methods). On the other hand,
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there is also an exponential law stating the minimal
amount of data needed for plausible conclusions
about time-series patterns in nonlinear analyses.
The practical limit to the embedding dimension of
time series that can be analysed in practice has
been fixed at a value of 4 (e.g. Hunt et al. 2003).
Therefore, when analysing relatively short time
series (as is quite normal in many practical cases)
rather dangerous assumptions have to be adopted,
either that the dynamics of the variable chosen for
that analysis is affected by only a few state variables
(e.g. Henttonen & Hanski 2000) or that such a small
embedding level allows detection of nonlinearity
s.s. even for large-dimensional time series (e.g.
Nychka et al. 1992).
In any case, applying inadequately modified

methods to data of poor quality or insufficient quan-
tity may result in mathematically inconsistent or
implausible findings; hence, a multidisciplinary
approach is inevitably necessary for elaborating
appropriate models in the spatio-temporal domain.
A possible way of simulating the process of rock
slope collapse preparation as the development of
hierarchically structured, complex systems with
multifactor control is by using Self Organized Criti-
cality models, which qualitatively differ from the
currently used engineering-oriented ones. In this
way, quite new pieces of knowledge could be
revealed that have not yet been discovered through
spatially–temporally limited field observations
(see Holland 1998; Bossomaier & Green 2000).

Conclusions

The main conclusions arrived at with this study are
listed as follows:

(1) Monitoring time series from unstable rock
slopes reveals more information about
dynamics of slope failure than we are able to
acquire by current analytical methods. The
reason for this is that current methods are
based on a linearly causal paradigm, and are
founded on empirical–phenomenological
models, which are unable to be sufficiently
assisted by the processing power of computers
when dealing with large amounts of data.

(2) In the case history reported here, the hidden
information was revealed when methods
from a toolbox of the Nonlinear Sciences
were applied. Geometrical methods, the
phase portrait, and correlogram of time series
have proven to possess greater ability to
display the features looked for than the
current time–displacement plots. In particular,
they proved to be more suitable for revealing
transitions from near-to-equilibrium (NTE) to
far-from-equilibrium (FFE) dynamical states
of slope failure system, as well as to help in

distinguishing between intrinsic slope move-
ment dynamics and climatically driven SA
activity.

(3) The qualitative difference between intrinsic
slope movement dynamics of the NTE and
FFE time series is important for assessing
slope behaviour. The NTE series possess a
linear non-Gaussian but asymmetrical fat-
tailed distribution of movement events. In
contrast, the FFE series are nonlinear (s.l.)
features of persistent long-range correlation
of self-affine processes with two scaling
regions.

(4) The graphical methods and the numerical
testing of fractal features seem to be very prom-
ising for assessing the state of immediate rock
fall danger. To this end, it also suggested that
modelling the dynamics of preparation for
rockslopecollapse as a complex self-organizing
system may be appropriate to reveal the crucial
dynamical patterns of slope failure systems.
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rock objects in Hřensko village (in Czech).
Geotechnika, 3, 13–16.

ZVELEBIL, J. 1985. Time prediction of a rock fall from
a sandstone rock slope. In: Proceeding of 4th
International Symposium on Landslides. Toronto
University Press, Toronto, 3, 93–96.

ZVELEBIL, J. 1989. Engineering-geological aspects of
rock slope development in Děčı́n Highland, NW
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